
Asymptote package CAD.asy

∗

Mark Henning, Germany

†

29 September 2006

Contents

1 Introduction 1

2 Important rules for using this package 1

3 Usage 2

4 Example 5

1 Introduction

The package CAD.asy provides basic pen definitions and measurement functions

for simple 2D CAD drawings according to DIN 15.

2 Important rules for using this package

If a function is declared like this:

void foo(int nParam1, string strParam2)

You may call it foo(0, ’abc’); or foo(nParam1=0, strParam2=’abc’);.

The definitions of the functions in this package may change in future ver-

sion: the order of the parameters may be changed, new parameters may be

inserted. Therefore it is strongly recommended always calling the functions

foo(nParam1=0, strParam2=’abc’);.

∗

This document describes version 1.0.

†

URL: http://www.markhenning.de

1

3 Usage

To use the capabilities of the package, import it:

import CAD;

All functions are encapsulated in the structure sCAD. As the pen definitions may

differ depending on the size of your drawing, you have to initialize the structure

before drawing:

static sCAD Create(int nLineGroup = 1)

The parameter nLineGroup depends on the size of your drawing. It specifies

the line group to define the pens and thus the width used for the lines. The

parameter has to be within the range [0; 3]. The larger the value, the thicker

the lines. Code example:

sCAD cad = sCAD.Create();

The created variable cad then provides the most important pens. Available

pens are:

• The pens of group A:

– pA

– pVisibleEdge

– pVisibleContour

– pUsableWindingLength

– pSystemLine

– pDiagramCurve

– pSurfaceStructure

• The pens of group B:

– pB

– pLightEdge

– pMeasureLine

– pMeasureHelpLine

– pMeasureLineBound

– pReferenceLine

– pHatch

2

– pWindingGround

– pDiagonalCross

– pBendLine

– pProjectionLine

– pGrid

• The pens of group C:

– pC

– pFreehand

• The pens of group E:

– pE

– pSurfaceTreatmentAllowed

• The pens of group F:

– pF

– pInvisibleEdge

– pInvisibleContour

• The pens of group G:

– pG

– pMiddleLine

– pSymmetryLine

– pPartialCircle

– pCircularHole

– pDivisionPlane

– pTransferLine

• The pens of group J:

– pJ

– pCuttingPlane

– pSurfaceTreatmentRequested

• The pens of group K:

– pK

– pContourBeforeDeformation

– pAdjacentPartContour

– pEndShapeRawMaterial

3

– pContourEligibleType

– pPartInFrontOfCuttingPlane

All pens of one group are the same. So there is no difference between the pen

pA and the pen pVisibleEdge. You may use the short names or the descriptive

ones. The list of groups is not complete. I had no idea how to implement the

pens of group D. For me, group H seems to be obsolete, and there is no group I

contained in DIN 15. In the case I did something wrong translating the German

names into English, the source file also contains the original German names of

each pen. Whenever a drawing function does not allow you to select the pen,

the right pen is selected automatically.

void MeasureLine(picture pic = currentpicture,

Label L,

pair pFrom,

pair pTo,

real dblLeft = 0,

real dblRight = 0,

real dblRelPosition = 0.5,

bool bSmallBound = false)

This is the basic function to draw labeled straight measurement lines. pic

denotes the picture the line has to be drawn into, L is the label of the line. The

pairs pFrom and pTo are the start and the end point of the distance to measure,

respectively. Note, that these two points do not refer to the start and end point

of the line, as it may be longer than the measured distance.

The line is extended on its left side (= the part of the line ’before’ the start

point) by the distance dblLeft. On its right side (= the part of the line ’behind’

the end point) it is extended by the distance dblRight. dblLeft and dblRight

must be ≤ 0. If only one of both values is zero, it is set to the value of the other

one, because according to DIN 15 it is not allowed to draw a measurement

line asymmetrically. The position of the arrows indicating begin and end of

the distance depends on dblLeft and dblRight. If both values are 0, the

measurement arrows are drawn within the measurement distance. Otherwise

they are drawn outside.

The parameter dblRelPosition refers to the relative position of the label be-

tween the start and end point. This means: The value 0 positions the label at

the start point, 0.5 refers to the center between the start and the end point.

Finally, the value 1 will position the label at the end point. If dblLeft or

dblRight are nonzero, you may position the label at the left side of the start

point (< 0) or at the right side of the start point (> 1).

Usually, there is enough space to draw the measurement arrows. If you wish to

use small circles instead of the arrows, set bSmallBound to true.

real GetMeasurementBoundSize(bool bSmallBound = false)

4

Returns the size of the arrow or the small bound circle used for measurement

lines.

guide GetMeasurementBound(bool bSmallBound = false)

Returns the correctly scaled guide of the arrow or the small bound circle used

for measurement lines.

void MeasureParallel(picture pic = currentpicture,

Label L,

pair pFrom,

pair pTo,

real dblDistance,

// Variables from MeasureLine

real dblLeft = 0,

real dblRight = 0,

real dblRelPosition = 0.5,

bool bSmallBound = false)

Usually, measurement lines are placed outside the drawing with reference lines to

the measured distance. pFrom and pTo denote the points of the drawing marking

the begin and the end of the distance to measure, and not the begin and the

end of the measurement line as in the case of the function MeasureLine. The

measurement line is placed dblDistance away from the distance to measure. If

you would be at pFrom and look into the direction pTo, it is placed on the left

for positive values of dblDistance. For negative values, it is positioned on the

right. For the meaning of the other parameters see the function MeasureLine.

guide MakeFreehand(pair pFrom, pair pTo,

real dblRelDivisionLength = 12.5,

real dblRelDistortion = 2.5,

bool bIncludeTo = true)

To draw a line between two points, which is not straight, but more like a free-

hand line, use this function. The pairs pFrom and pTo denote start and end

point, respectively. dblRelDivisionLength is the length of the parts, the line

is subdivided into. dblRelDistortion is the amount of distortion. Both sizes

are given relative to the width of a freehand line. If bIncludeTo is true, the

point pTo is added to the path. Otherwise it is not. This may be useful for

converting a guide containing more than two points to a freehand line.

4 Example

To produce figure 1, use this code:

5

√
2

1 0.5 0.5

Figure 1: Example showing the measurement capabilities and a small freehand

line.

import CAD;

sCAD cad = sCAD.Create();

// Freehand line

draw(g = cad.MakeFreehand(pFrom = (3, -1)*cm, (6, -1)*cm),

p = cad.pFreehand);

// Standard measurement lines

draw(g = box((0, 0)*cm, (1, 1)*cm), p = cad.pVisibleEdge);

cad.MeasureParallel(L = "$\sqrt{2}$",

pFrom = (0, 1)*cm,

pTo = (1, 0)*cm,

dblDistance = -15mm);

// Label inside, shifted to the right; arrows outside

draw(g = box((2, 0)*cm, (3, 1)*cm), p = cad.pVisibleEdge);

cad.MeasureParallel(L = "1",

pFrom = (2, 1)*cm,

pTo = (3, 1)*cm,

dblDistance = 5mm,

dblLeft = 5mm,

dblRelPosition = 0.75);

// Label and arrows outside

draw(g = box((5, 0)*cm, (5.5, 1)*cm), p = cad.pVisibleEdge);

cad.MeasureParallel(L = "0.5",

pFrom = (5, 1)*cm,

pTo = (5.5, 1)*cm,

dblDistance = 5mm,

dblLeft = 10mm,

dblRelPosition = -1);

// Small bounds, asymmetric measurement line

draw(g = box((7, 0)*cm, (7.5, 1)*cm), p = cad.pVisibleEdge);

cad.MeasureParallel(L = "0.5",

pFrom = (7, 1)*cm,

6

pTo = (7.5, 1)*cm,

dblDistance = 5mm,

dblLeft = 2*cad.GetMeasurementBoundSize(

bSmallBound = true),

dblRight = 10mm,

dblRelPosition = 2,

bSmallBound = true);

7

